
RESEARCH PAPER

Prediction of the Corneal Permeability of Drug-Like Compounds

Heidi Kidron & Kati-Sisko Vellonen & Eva M. del Amo & Anita Tissari & Arto Urtti

Received: 17 November 2009 /Accepted: 24 March 2010 /Published online: 13 April 2010
# Springer Science+Business Media, LLC 2010

ABSTRACT
Purpose To develop a computational model for optimisation
of low corneal permeability, which is a key feature in ocular
drug development.
Methods We have used multivariate analysis to build corneal
permeability models based on a structurally diverse set of 58
drug-like compounds.
Results According to the models, the most important
parameters for permeability are logD at physiologically relevant
pH and the number of hydrogen bonds that can be formed.
Combining these descriptors resulted in models with Q2 and
R2 values ranging from 0.77 to 0.79. The predictive capability
of the models was verified by estimating the corneal per-
meability of an external data set of 11 compounds and by using
predicted permeability values to calculate the aqueous humour
concentrations in the steady-state of seven compounds. The
predicted values correlated well with experimental values.
Conclusion The developed models are useful in early drug
development to predict the corneal permeability and steady-
state drug concentration in aqueous humor without experi-
mental data.
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ABBREVIATIONS
Css steady-state concentration
HBA number of hydrogen bond acceptors
HBD number of hydrogen bond donors
HBtot total number of putative hydrogen bonds,

i.e. HBD + HBA
logP the logarithm of the octanol-water partition

coefficient of the neutral form
logperm the logarithm of the corneal permeability
logD7.0, logD7.4

and logD8.0

the logarithm of the octanol-water partition
coefficient at pH 7.0, 7.4 and 8.0,
respectively

MV molecular volume
MW molecular weight
PCA principal component analysis
PLS partial least squares
PSA polar surface area
QSPR quantitative structure-property relationship
RMSE root mean squared error
RMSEP root mean squared error of prediction
VIP variable importance in the projection

INTRODUCTION

In the treatment of ophthalmic diseases, eye drops are the
most convenient, economical and safe way to deliver drugs
into the eye compared to invasive delivery routes such as
intravitreal or periocular injections. The main route for
drug absorption from eye drops is permeation through the
cornea (1). However, the cornea is a tight diffusion barrier,
which protects the eye against exogenous compounds. It
consists of three main layers: the epithelium, stroma and
endothelium. The endothelium is a monolayer facing the
aqueous humor, and it is considered to have minor
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significance in drug permeation through the cornea. Tight
junctions of the corneal epithelium limit drug permeation
through paracellular pores, but lipophilic compounds can
pass through the stratified epithelium by the transcellular
permeation route. However, the underlying hydrophilic
stroma may limit the permeation of very hydrophobic
compounds. Accordingly, permeation through cornea has
been shown to follow a parabolic relationship with an
optimal logP of 2–3 (2). In general, the ocular drug
absorption from the tear fluid through the cornea is
inefficient. The absolute ocular bioavailability is usually
below 5%, while the majority of the drug dose is absorbed
rapidly to the systemic blood circulation through the
conjunctival and nasal mucosae (3).

Optimisation of the corneal permeability is one of the
key features in ocular drug discovery and development.
Corneal drug permeability can be determined by diffusion
studies with isolated corneas (rabbit, bovine, pig) (2,4) or
corneal epithelial cell models (5,6). These are labour
intensive, tedious and expensive methods that are not
feasible for rapid drug screening. In vivo ocular pharmaco-
kinetic studies are even less suitable for screening, because
several animals, usually rabbits, must be sacrificed for each
time point in the concentration-time curve. Therefore, new
tools are needed for ophthalmic drug discovery to enable
rapid evaluation and pre-selection of the compounds before
studies with cells, tissues or animals. Such tools would also
reduce the number of animal experiments.

Fast and easy-to-use computational methods would be
optimal for permeability screening of new molecules before
experimental studies. Previously, it has been reported that
the absorption of drug-like compounds in the human
intestine can be predicted as accurately with computational
models as with in vitro experiments (7). Even though
quantitative structure-property relationship (QSPR) models
for transdermal and intestinal absorption of drugs have
been constructed (8–10), QSPR models for the corneal
permeability are still at an elementary level. Some
computational models for predicting the corneal perme-
ability have been developed (2,11–14), but so many of these
models have been constructed for a small set of similar
compounds (2,13), and the models are thus not applicable
to a broader variety of molecules. Other models use
descriptors that are difficult to obtain, like delta logP, the
difference between the octanol-water partition coefficient
and the alkane-water partition coefficient (11). On the other
hand, a more extensive physiological model (15) has been
developed, but the use of this model in early ADME
context may be limited due to its complexity. The
physiological model incorporates the corneal morphology;
therefore, it can be used also to investigate the impact of
structural changes in the cornea. However, a straight-
forward QSPR-based algorithm for the prediction of the

corneal permeability would be useful in early ocular drug
discovery and development.

In this study, we aimed to generate a completely
computational model for the corneal permeability in early
drug discovery. The model should be easily applicable to a
variety of new compounds without the need to produce any
prior experimental data. The models of this study are based
on a diverse set of 58 drug-like compounds. There are
plenty of experimental data available from the literature
about the corneal permeability of different drugs or drug-
like compounds. However, the permeability values for a
compound can differ greatly in different conditions;
therefore, we have taken great care to only include
experimental data that has been measured in comparable
experimental conditions. Since the models are intended for
use during the early drug discovery process, we have opted
to use only calculated physicochemical properties, and we
did not include any experimental descriptors, which can be
time-consuming and costly to obtain for new compounds.
The resulting models are statistically sound, easy to use,
have a broad applicability and can be explained physiolog-
ically. The predictive power of the final models was verified
by estimating the corneal permeability on an external data
set of eleven compounds and by predicting the steady-state
concentrations in the aqueous humour in vivo based on the
predicted permeability values.

MATERIALS AND METHODS

Compound Data Set

A data set of 58 compounds (Table I and Supplementary
Material) was constructed based on an extensive literature
search for corneal permeability studies (4,16–24). The
reported permeability of the compounds included in the
dataset has been measured in vitro in the rabbit cornea.
The experiments were performed in Ringer’s buffer
during a maximal duration of 6 h, hydration level was
below 83%, a mix of O2 and CO2 (95:5) was used to
adjust the pH and to mix the buffer, and temperature was
set between 34–37°C.

Molecular Descriptors

The molecular descriptors were calculated with the
ACDLabs software package version 6.0 (25). Descriptors
that are known to affect membrane permeability were
selected for this study: molecular weight (MW), molecular
volume (MV), polar surface area (PSA), number of
hydrogen bond donors (HBD), number of hydrogen bond
acceptors (HBA), total number of putative hydrogen bonds,
i.e. HBD + HBA (HBtot), the logarithm of the octanol-

Prediction of Corneal Permeability 1399



Table I Calculated Molecular Descriptors and Experimentally Observed Permeability Values for Compounds Used in Model Building

Nr Name MW MV PSA HBD HBA HBtot logP logD7.0 logD7.4 logD8.0 perm (cm/s)

1a acetazolamideb,c 222.3 127 151.7 3 7 10 −0.26 −0.4 −0.55 −0.94 9.1E-07

2a alprenolold 249.3 247 41.5 2 3 5 2.88 0.77 1.13 1.7 2.9E-05

3a atenolole 266.3 237 84.6 4 5 9 0.1 −2.02 −1.65 −1.09 6.7E-07

4 benzolamideb 320.4 183 177.1 3 8 11 0.2 −1.4 −1.7 −2.11 1.4E-07

5a bevantolole 345.4 311 60 2 5 7 3.38 1.71 2.09 2.62 5.4E-05

6a bromoacetazolamideb 301.1 143 143 2 7 9 −0.19 −0.32 −0.45 −0.81 3.8E-07

7a bufuralole 261.4 245 45.4 2 3 5 3.38 1.43 1.81 2.36 5.7E-05

8 chlorzolamideb 275.7 172 122.6 2 5 7 1.6 1.43 1.26 0.86 1.8E-05

9 clonidinef,g 230.1 153 36.4 2 3 5 1.54 0.78 1.07 1.36 3.1E-05

10a corynanthineg 354.4 269 65.6 2 5 7 2.2 0.75 1.13 1.63 1.1E-05

11 cyclophosphamideh 261.1 196 51.4 1 4 5 0.23 0.23 0.23 0.23 1.1E-05

12 ethoxazolamideb 258.3 176 118.9 2 5 7 2.05 2.04 2.01 1.91 5.6E-05

13a 2-benzothiazole-sulfonamidei 214.3 135 109.7 2 4 6 1.33 1.31 1.28 1.16 3.6E-05

14 6-hydroxy-2-benzo-thiazolesulfonamidei 230.3 134 129.9 3 5 8 1.13 1.06 0.96 0.65 5.6E-06

15a 6-chloro-2-benzo-thiazolesulfonamidei 248.7 147 109.7 2 4 6 2.1 2.07 2.03 1.87 4.3E-05

16 4.6-dichloro-2-benzo-thiazolesulfonamidei 283.2 159 109.7 2 4 6 2.6 2.55 2.49 2.28 3.9E-05

17a 6-amino-2-benzo-thiazolesulfonamidei 229.3 137 135.7 4 5 9 0.52 0.51 0.49 0.42 6.7E-06

18a 6-nitro-2-benzo-thiazolesulfonamidei 259.3 147 155.5 2 7 9 1.36 1.31 1.24 1.01 6.6E-06

19 6-hydroxyethoxy-2-benzothiazolesulfonamidei 274.3 173 139.1 3 6 9 0.55 0.53 0.5 0.39 1.5E-06

20 6-benzyloxy-2-benzo-thiazolesulfonamidei 320.4 220 118.9 2 5 7 3.18 3.16 3.03 3.14 4.7E-05

21a 6-acetamido-2-benzo-thiazolesulfonamidei 271.3 168 138.8 3 6 9 0.86 0.84 0.81 0.69 4.7E-06

22 levobunolold,e 291.4 263 58.6 2 4 6 2.86 0.77 1.14 1.7 2E-05

23a labetalold 328.4 274 95.6 5 5 10 2.31 0.33 0.67 1.09 1.4E-05

24a methazolamideb 236.3 132 138.9 2 7 9 0.13 −0.04 −0.21 −0.62 2.6E-06

25 5-imino-4-methyl-1.3.4-thiadiazoline-2-sulfonamideb 194.2 95 133.3 3 6 9 −2.45 −2.53 −2.62 −2.91 7.8E-07

26 metoprolold,e 267.4 259 50.7 2 4 6 1.79 −0.33 0.03 0.6 2.5E-05

27 nadolole 309.4 260 82 4 5 9 1.29 −0.83 −0.47 0.1 1E-06

28 oxprenolold,e 265.4 255 50.7 2 4 6 2.29 0.17 0.54 1.1 2.9E-05

29 penbutolole 291.4 283 41.5 2 3 5 4.17 2.05 2.42 2.98 4.5E-05

30 phenylephrineg 167.2 144 52.5 3 3 6 −0.03 −2.2 −1.83 −1.28 9.4E-07

31a pindolold 248.3 215 57.3 3 4 7 1.97 −0.18 0.19 0.75 0.00001

32 propranolole 259.3 237 41.5 2 3 5 3.1 1 1.37 1.93 4.8E-05

33a rauwolfineg 314.4 239 47 2 4 6 1.45 1.06 1.25 1.39 9.2E-06

34a SKF86607g 191.3 142 66 1 3 4 1.35 0.55 0.86 1.17 7.9E-05

35 SKF86466g 195.7 177 3.2 0 1 1 3.26 1.53 1.91 2.45 7.1E-05

36a SKF72223g 193.2 180 30.5 1 3 4 1.29 −0.67 −0.29 0.27 4.9E-05

37 sotalole 272.4 220 86.8 3 5 8 0.32 −1.82 −1.45 −0.9 1.6E-06

38 1[(N-methylamino) sulfonyl]-4-chloro-benzenec 205.7 152 54.6 1 3 4 1.92 1.92 1.92 1.92 6.5E-05

39a 4-chlorobenzene sulfonamidec 191.6 130 68.5 2 3 5 0.84 0.84 0.84 0.84 5.5E-05

40 6-sulfonamido-3-substituted-3H-1.3.4.-thiadiozolo
[2.3-C]-1.2.4-thiadiazole j

313.4 163 159.5 2 7 9 2.52 0.82 0.66 0.56 7.9E-06

41a 3-chloro der. of 40 j 347.8 172 159.5 2 7 9 3.5 1.75 1.62 1.53 1.3E-05

42 4-chloro der. of 40 j 347.8 172 159.5 2 7 9 3.63 1.87 1.74 1.66 8.3E-06

43a 3-methoxy der. of 40 j 343.4 185 168.7 2 8 10 2.66 0.96 0.8 0.7 4.5E-06

44 4-methoxy der. of 40 j 343.4 185 168.7 2 8 10 2.93 1.28 1.1 0.98 5.2E-06

45a 4-hydroxy der. of 40 j 329.4 160 179.7 3 8 11 1.89 0.24 0.07 −0.07 3.5E-07

46a 3-fluoro der. of 40 j 331.4 166 159.5 2 7 9 3.06 1.31 1.18 1.09 6.4E-06

47a 4-fluoro der. of 40 j 331.4 166 159.5 2 7 9 2.81 1.08 0.94 0.85 4.1E-06
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water partition coefficient of the neutral form (logP) and at
pH 7.0, 7.4 and 8.0 (logD7.0, logD7.4 and logD8.0, respec-
tively). The molecular structures of the compounds were
imported from ACD/Dictionary, sketched in ACD/Chem-
Draw version 6.0 (25) or their SMILES codes were ex-
tracted from the PubChem database (26) (http://pubchem.
ncbi.nlm.nih.gov). All molecular descriptor values of the
compounds in the data set are given in Table I.

Multivariate Data Analysis

Multivariate data analyses were performed with Simca-P
version 10.5 (27). The diversity of the compounds in the
data set was analyzed with principal component analysis
(PCA) using all molecular descriptors. The relationship
between the logarithm of corneal permeability (logperm) and
the molecular descriptors was determined by Partial Least
Squares (PLS) analysis (28). Based on their distribution in
the PCA plot, the data set was divided into a training set
and an internal test set of 29 compounds each. Initial
models were calculated from the compounds in the training
set. The predictive capability of these models was estimated
by cross-validation and by predicting the corneal perme-
ability for the compounds in the internal test set. The cross-
validation was performed by dividing the data into seven
groups and subsequently leaving out one group, for which
compounds the permeability was predicted. The differences
between the actual and the predicted permeability values
are then calculated and expressed as Q2 (the cross-validated
R2). A Q2 value above 0.5 indicates that the model has a
better predictive power than chance. The predictive
capability of the initial models was validated by predicting
the permeability of the compounds in the internal test set.
For the final models, the original data set of 58 compounds

was used in order to achieve higher accuracy by including
more data into the models. The final models were then cross-
validated, and the predictive power was tested by predicting
the corneal permeability of an external data set of eleven
compounds (Table II and Supplementary Material).

The statistical significance of the predictive capability of
the final models was estimated by the validate function in
Simca-P (27). Here, a PLS model is fitted to randomly
shuffled permeability values, and R2 and Q2 are calculated.
The process was repeated 50 times to get reference
distribution of R2 and Q2 based on random data. The data
was plotted with the Y-axis representing the R2 and Q2

values and the X-axis the correlation coefficients between
shuffled and original variables. Regression lines were fitted
for the R2 and Q2 points, and the intercepts on the Y-axis
represent “background” by fit to random data. The R2 and
Q2 intercept for valid models should not exceed 0.3 and
0.05, respectively (27).

Prediction of Aqueous Humour Concentrations Using
Permeability Values Calculated with QSPR Models

To further estimate the predictive capability of the devel-
oped models, steady-state concentration (Css) in aqueous
humour was calculated using permeability values obtained
with models 3b and 4b. We selected compounds for which
the aqueous humour Css has been studied earlier with the
topical infusion method in vivo in the rabbit eye and the
ocular clearance reported in the literature (19,22,29,30). In
these studies, a constant input rate was achieved by placing
a cylinder containing the test solution on the surface of the
cornea, and the permeation of test compounds was
followed until steady state in aqueous humour concentra-
tion was reached.

Table I (continued)

Nr Name MW MV PSA HBD HBA HBtot logP logD7.0 logD7.4 logD8.0 perm (cm/s)

48a 4-dimethylamino der. of 40 j 356.5 204 162.7 2 8 10 2.32 0.74 0.54 0.39 5.8E-06

49 timolold,e 316.4 258 108 2 7 9 0.06 −1.77 −1.39 −0.84 1.2E-05

50 trichlormethazolamideb,k 340 166 138.9 2 7 9 2.07 1.9 1.73 1.32 1.1E-05

51 trifluormethazolamideb 290.2 147 138.9 2 7 9 1.66 1.48 1.31 0.9 3.9E-06

52 yohimbineg 354.4 269 65.6 2 5 7 2.2 0.75 1.13 1.63 1.8E-05

53a cinoxacinl 262.2 160 88.4 1 7 8 −0.09 −3.83 −3.84 −3.84 1.5E-06

54a nalidixic acidl 232.2 174 70.5 1 5 6 1 −0.1 −0.41 −0.95 1.7E-05

55a enoxacinl 320.3 231 85.8 2 7 9 1.21 −0.26 −0.4 −0.8 1.7E-06

56a norfloxacinl 319.3 237 72.9 2 6 8 1.48 −0.68 −0.68 −0.78 1.4E-06

57 ofloxacinl 361.4 244 73.3 1 7 8 1.61 −0.5 −0.65 −1.03 1.9E-06

58 ciprofloxacinl 331.3 227 729 2 6 8 1.31 −0.85 −0.85 −0.95 1.3E-06

a The compound is included in the internal test set, b Reference (16), c Reference (17), d Reference (18), e Reference (4), f Reference (18), g Reference (19),
h Reference (20), i Reference (21), j Reference (22), k Reference (23), l Reference (24).
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To calculate Css the following equation was used:

Css¼Cc � Papp � S=CL

In the equation, Cc is the concentration of the compound
applied to the cornea (µg/ml), Papp is the permeability value
(cm/s, calculated by model 3b, 4b or measured experi-
mentally), S is the surface area of cornea available for per-
meation (0.503 cm2) and CL is the clearance from aqueous
humour (µL/min).

RESULTS

Molecular Diversity of the Compounds

The ranges of the descriptor values were for MW 167–
361 g/mol, MV 95–269Å3, PSA 3–177Å2, HBD 0–4, HBA
1–8, HBtot 1–11, logP −2.5 − +4.2, logD7.0 -2.5 − +3.2,
logD7.4 −2.6 − +3.0 and logD8.0 −2.9 − +3.1 (Table I). A
PCA was performed of the 58 compounds in the data set in
order to analyze their molecular diversity. All calculated
descriptors were used for the PCA, which resulted in a
model with two principal components explaining 43% and
29%, respectively, of the variance in the data set. Fig. 1
shows the PCA score plot of the 58 compounds in the data
set. The compounds are quite well separated, with three
compounds (5-imino-4-methyl-1,3,4-thiadiazoline-2-sulfon-
amide, SKF86466 and cinoxacin) outside the elliptic 95%
tolerance volume. The three compounds were not exclud-
ed, as 5% of the dataset is allowed outside the ellipse. The
data set of 58 compounds was at first divided into a training
set of 29 compounds and an internal test set of 29
compounds based on their distribution in the PCA score
plot (Fig. 1, Table I).

PLSAnalysis of Training Set Compounds and Evaluation
of Derived Models with Internal Test Set Compounds

A PLS analysis with the ten calculated descriptors and the
29 compounds of the training set resulted in a one-
component model with Q2=0.73 and R2=0.80 (model 1a,
Table III). In order to construct a simpler model, we then
used the variable influence on projection (VIP) function in
Simca-P. A VIP value above 1 indicates that the descriptor
has a higher than average influence in explaining the cor-
neal permeability. In model 1a, the four lipophilicity vari-
ables (logP, logD7.0, logD7.4 and logD8.0) as well as two
hydrogen bond variables (HBtot and HBD) had VIP values
above 1 (Fig. 2). Using these six descriptors with VIP values
above 1 for a new PLS analysis on the training set yielded a
one-component model with similar values, Q2=0.73 and
R2=0.77 (model 2a, Table III). Finally, when we combined

Fig. 1 PCA score plot of the 58 compounds in the data set. The black
triangles represent compounds in the training set, and the unfilled triangles
the compounds in the internal test set. The ellipse depicts the 95%
tolerance volume based on hotelling T2 (0.05).

Table II Calculated Molecular Descriptors and Observed Corneal Permeability (31) for the External Data Set Compounds

Compound MW MV PSA HBD HBA HBtot logP logD7.0 logD7.4 logD8.0 perm

Moxifloxacin 401.43 285 82.11 2 7 9 1.9 −0.63 −0.61 −0.6 9.1E-06

Levofloxacin 361.37 243.97 73.32 1 7 8 1.61 −0.5 −0.65 −1.03 2.9E-06

Gatifloxacin 375.39 270.75 82.11 2 7 9 1.51 −0.66 −0.66 −0.75 2.5E-06

Lomefloxacin 351.35 261.64 72.88 2 6 8 2.37 0.39 0.36 0.19 3.5E-06

Buspirone 385.5 310.68 69.64 0 7 7 3.43 3.25 3.35 3.41 6.65E-05

Apraclonidine 245.11 150.01 62.44 4 4 8 0.3 −1.52 −1.33 −0.92 3.8E-06

Fluorescein 332.31 207.44 75.99 2 5 7 2.98 2.97 2.96 2.92 1.6E-05

Pilocarpine 208.26 170.19 39.19 0 4 4 −0.1 −0.4 −0.24 −0.14 9.8E-06

Nepafenac 254.28 203.44 86.18 4 4 8 1.17 1.17 1.17 1.17 7.4E-05

Betaxolol 307.43 287.99 50.72 2 4 6 2.69 0.56 0.93 1.5 6E-05

Dexamethasone 392.46 296.21 94.83 3 5 8 1.87 1.87 1.87 1.87 9.2E-06
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the HBtot descriptor (the hydrogen bond variable with the
highest VIP value) with either logD7.4 and logD8.0 (the
lipophilicity descriptors with the highest VIP values), we
obtained one-component models with Q2=0.75 and R2=
0.79 and Q2=0.76 and R2=0.80, respectively (models 3a
and 4a, Table III). However, when only the distribution
coefficients logD7.4 and logD8.0 were included in the model,
the Q2 value dropped to 0.68 and the R2 value to 0.69. The
models were then evaluated by predicting logPapp of the
internal test set compounds. The correlation between
experimental and predicted logPapp values of the internal
test set compounds for models 3a and 4a are shown in
Fig. 3.

Final Model Construction

The 58 compounds from the original dataset (both training
and internal test sets) were used for the final model
calculations. Four models were made: using all ten variables
(model 1b, Table III), the HBtot, HBD, logP and the three
logD variables (model 2b), HBtot and logD7.4 (model 3b)
or HBtot and logD8.0 (model 4b). In order to better
understand the importance of each descriptor, we calcu-
lated the linear correlation between the logPapp and each
of the ten variables using all 58 compounds in the original
dataset (Table IV). The best correlations were obtained
with HBtot, logD7.4 and logD8.0 (Q

2 and R2 values > 0.5),
whereas no correlation could be found between either
MW or MV and logPapp (Q2 and R2 values < 0.1). Since
the same variables that were found important in the PLS
analyses had the best correlation on their own, we
excluded the other variables from our final models. The
statistical significance of the predictive capability of the
final models was evaluated with the validate function in
Simca-P. The R2 and Q2 Y-intercepts were −0.04 and
−0.127 for model 3b and −0.06 and −0.132 for model 4b,
respectively, which is well below the upper limits of a
statistically valid model. The following equations were

obtained for models 3b and 4b (equations for the other
models are given in Supplementary Material):

logPapp ¼ �3:885� 0:183 HBtotð Þ þ 0:277 logD7:4ð Þ ð3bÞ

logPapp ¼ �4:002� 0:169 HBtotð Þ þ 0:265 logD8:0ð Þ ð4bÞ

Evaluation of the Predictive Power of the Final
Models on an External Test Set

We tested the models 3b and 4b by predicting the corneal
permeability of an external test set (Table II). Five
compounds (ofloxacin, ciprofloxacin, norfloxacin, timolol
and atenolol) were also included in the original data set that
was used to build the final models and were removed from
the external test set before prediction. The eleven com-
pounds that remained were similar to the compounds used
for the model building, as all fit inside the elliptic tolerance
volume on the PCA score plot (data not shown). The
permeability of the compounds in the external data set had
been measured in otherwise similar conditions but in a BSS
Plus buffer (Alcon Inc.) (31). The results of the logPapp
predictions are given in Table V. Model 4b predicted the
corneal permeability for these compounds slightly better
than model 3b, which is reflected by the lower RMSEP
value: 0.39 for model 4b and 0.42 for model 3b.

Prediction of Aqueous Humour Css

Aqueous humour Css of seven compounds (Table VI) was
estimated using permeability values calculated by models
3b and 4b and compared to experimental Css from topical
infusion studies. Both models estimated Css values relatively
closely to experimental Css measured with constant infusion
studies. The difference to the experimental Css values was
0.9–6.7-fold and 0.7–6.3-fold by model 3b and 4b,

Table III PLS Models Obtained from the Training Set Compounds (a)
and from the Whole Dataset of 58 Compounds (b)

Model Variables Q2 R2 RMSE RMSEP

1a 10 0.73 0.8 0.32 0.34
1b 10 0.76 0.78 0.32

2a 6 0.72 0.77 0.35 0.41
2b 6 0.75 0.77 0.33

3a HBtot + logD7.4 0.75 0.79 0.33 0.33
3b HBtot + logD7.4 0.77 0.78 0.32

4a HBtot + logD8.0 0.76 0.80 0.32 0.33
4b HBtot + logD8.0 0.78 0.79 0.32

Fig. 2 VIP plot from PLS analysis using all variables and the training set
compounds.
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respectively. When experimental permeability values
through isolated rabbit cornea were used to calculate Css,
values were 0.7–2.5-fold compared to measured aqueous
humour concentrations. For five compounds, namely
2-benzothiazolesulfonamide, clonidine, ethoxzolamide, ibu-

fenac and ibuprofen, the differences between experimental
and calculated Css values were only 0.9–3.2-fold for model
3b and 0.7–2.1-fold for 4b. This suggests that steady-state
concentration in the intraocular tissues may be estimated by

Fig. 3 Predicted versus observed
logPapp values for the internal test
set compounds according to A)
model 3a and B) model 4a. To
facilitate interpretation, a diagonal
line has been drawn. The pre-
dicted permeabilities fall inside a
factor of 10, as indicated by the
dashed lines. The correlation co-
efficient is 0.780 for model 3a and
0.785 for model 4a.

Table IV Q2 and R2 Values Obtained from Correlations between logPapp
and Each Individual Variable

Variable Q2 R2

MW 0.04 0.06

MV 0.01 0.03

PSA 0.21 0.23

HBD 0.17 0.20

HBA 0.41 0.43

HBtot 0.51 0.54

logP 0.33 0.34

logD7.0 0.40 0.41

logD7.4 0.50 0.51

logD8.0 0.58 0.61

Table V Predicted and Experimental LogPapp Values for the External Data
Set Compounds

Compound logPapp exp logPapp 3b logPapp 4b

Moxifloxacin −5.04 −5.70 −5.68

Levofloxacin −5.54 −5.53 −5.63

Gatifloxacin −5.60 −5.71 −5.72

Lomefloxacin −5.46 −5.25 −5.30

Buspirone −4.18 −4.23 −4.28

Apraclonidine −5.42 −5.72 −5.60

Fluorescein −4.80 −4.34 −4.41

Pilocarpine −5.01 −4.68 −4.71

Nepafenac −4.13 −5.02 −5.04

Betaxolol −4.22 −4.72 −4.61

Dexamethasone −5.04 −4.83 −4.85
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using permeability values based on molecular descriptors as
well as experimental permeability values.

DISCUSSION

We have collected corneal permeability data from literature,
which has been measured in similar conditions for 58
compounds. In order to make as easily applicable models as
possible, we used only calculated descriptors in this study, as
experimental descriptors can be hard to obtain for new
compounds. The initial models predicted the corneal
permeability of the internal test set compounds quite well,
as the difference in observed and predicted permeability of
the most poorly predicted compounds (bromacetazolamide,
labetalol, 3-fluoro-6-sulfonamido-3-substituted-3H-1,3,4,-
thiadiozolo-[2,3-C]-1,2,4-thiadiazole and cinoxacin) ranged
from 3- to 6-fold. Based on the training set models, only three
descriptors were considered for the final models: the total
amount of potential hydrogen bonding atoms (both acceptors
and donors) HBtot, and a distribution coefficient descriptor,
either logD7.4 or logD8.0. Linear correlations between HBtot,
logD7.4 or logD8.0 and logPapp supported the importance of
these descriptors in explaining corneal permeability. The
corneal permeability experiments were performed in the pH
range 7.4–7.8, which is likely to be reflected in the high
correlation of logD7.4 and logD8.0 to logPapp compared to
logD7.0. The final models were constructed using the HBtot,
logD7.4 or logD8.0 descriptors and the whole data set of 58
compounds. The final models do not differ statistically from
the models with up to ten of the calculated descriptors, with
Q2 and R2 values > 0.7. Notably, a model including only the
two distribution coefficients, logD7.4 and logD8.0, had
clearly lower Q2 and R2 values, ∼0.6, which indicates that
both lipophilicity and hydrogen bonding potential are
important for predicting corneal permeability.

The influence of the descriptors in the final models on
the corneal permeability can be explained physiologically.

The cornea consists of three main barriers: the epithelium,
the stroma and the endothelium. The epithelium and the
stroma are considered to be the most significant of the three
barriers, while the endothelium has a minor impact. The
logD value describes the transcellular permeation in the cell
layers of the epithelium, with increasing lipophilicity
leading to increasing permeability. The negative value of
the HBtot descriptor indicates that increasing hydrogen
bonding capacity decreases the permeability, which has
previously been interpreted to indicate that a lipophilic
compound that can penetrate the corneal epithelium could
have a decreased permeability rate through the stroma if it
forms many hydrogen bonds to the colleagen matrix (32).
Our results agree with previous studies that moderate
lipophilicity and weak hydrogen bonding potential is
favorable for corneal permeability (32) as well as for
permeability of other membrane barriers like the intestine
(8,9) and the blood-brain barrier(33). It should be noted
that at very high lipophilicity values (logP > 4) the corneal
permeability decreases, presumably due to the poor
desorption from the lipoidal epithelium to the hydrophilic
stroma. The QSPR models may not predict such lipophilic
compounds, but such substances are not likely to be useful
anyway for eyedrop administration, since they have poor
water-solubility.

In contrast to some previous studies (12,32), we did not
find that molecular weight or volume was an important
parameter for the corneal permeability, even though
molecular weight is known to affect the permeation across
pure lipid bilayers (34). This is explained first by the
relatively low variance in molecular weight of the com-
pounds in the data set (167–361 g/mol). However, most of
the topically administered ophthalmic drugs fit into this
MW range. Drug diffusion across the cornea is affected by
various processes making the situation very different from a
simple diffusion across a lipid bilayer. Only 1–2 cell layers
on the epithelial surface contain tight cell layer structures
with tight junctions, whereas even macromolecules can

Table VI Calculated and Experimental Aqueous Humour Concentrations in the Steady State (Css)

Compound Css 3b
a (µg/ml) Css 4b

b (µg/ml) Css exp
c (µg/ml) Css

d (µg/ml)

2-Benzothiazolesulfonamide 36.55 30.39 55.93 41e

Clonidine 25.41 26.42 25.12 18.61f

Ethoxzolamide 2.72 2.32 6.20 3.2e

6-Hydroxyethoxy-2-benzothiazolesulfonamide 9.44 8.89 3.50 1.4e

Ibufenac 51.60 33.22 22.88g ∼16g

Ibuprofen 29.69 18.68 10.65 ∼16g

Phenylephrin 66.90 91.24 19.43 16.55i

aCalculated Css based on permeability values predicted by model 3b, b calculated Css based on permeability values predicted by model 4b, c calculated Css based on
experimentally measured permeability values through isolated rabbit cornea, d experimentally measured aqueous humour Css values from topical infusion studies,
e Reference (22), f Reference (19), g Reference (29), h estimated from figure, i Reference (30).
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diffuse between the epithelial cells in the deeper layers and
in the stroma (35). It is known that large molecular weight
limits the corneal permeability of peptides and proteins
(36), but for such large molecules, conjunctiva, not cornea,
is the main absorption route into the eye (37). Thus, the
model is applicable in the molecular weight range 167–361,
but it should not be used for macromolecules.

Five compounds (corynanthine, 3-chloro-6-sulfonamido-
3-substituted-3H-1,3,4,-thiadiozolo-[2,3-C]-1,2,4-thiadiazole,
4-chloro-6-sulfonamido-3-substituted-3H-1,3,4,-thiadio-
zolo-[2,3-C]-1,2,4-thiadiazole, 4-dimethylamino-6-sulfona-
mido-3-substituted-3H-1,3,4,-thiadiozolo-[2,3-C]-1,2,
4-thiadiazole and yohimbine) in the data set exceeded the
limit we had set for an acceptable hydration level of the
corneas measured after the permeability experiment. How-
ever, the compounds were not excluded from the data set,
since their removal did not significantly improve the obtained
models, as the effect was only ∼0.01 to the Q2, R2 and RMSE
values. The only compound that we excluded from this study
was acebutolol, whose corneal permeability has been
reported by two sources included in this study (4,18).
Previously, it has been identified as an outlier in modeling
studies (12,13), and, recently, acebutolol has been reported
to be actively transported by MDR-1 in rabbit cornea (38).

The final models performed well on the external data
set, with calculated permeability values that were within
2.5-fold difference to observed values for nine of the eleven
compounds for model 4b. The observed permeability of
nepafenac and moxifloxacin was approximately 8-fold and
4-fold higher than predicted with both models, which could
indicate that these compounds are actively transported. A
two-fold difference can be considered as excellent, since the
influence of experimental variation of measuring corneal
permeability is easily of the same scale. For instance, the
experimental permeability values for the five excluded
compounds (ofloxacin, ciprofloxacin, norfloxacin, timolol
and atenolol) varied approximately two-fold, even three-
fold for atenolol, between the experiments conducted in our
original data set and in the external data set. The models
performed almost equally well: thus, the selection of model
depends on the available descriptors. For highest accuracy,
we recommend that the models are used for compounds with
descriptor values inside the range of the descriptor values of
the test set compounds (listed in the Results section).

Ocular pharmacokinetics after eye-drop administration
is complex due to fast non-productive drug loss from tear
fluid by solution drainage and systemic drug absorption
through the conjunctiva. These loss processes compete with
the trans-corneal drug absorption to the intraocular tissues.
To avoid the complexities of the transient eyedrop kinetics,
we tested the models 3b and 4b with simplified in vivo
experimental set-up from the literature, i.e. the constant
drug infusion on the corneal surface and steady-state drug

concentration measurements in the aqueous humour. The
permeability values that the models predict have been
measured experimentally in diffusion chambers during
several hours of steady-state permeation. Due to demand-
ing experiments, experimental values of aqueous humour
Css and ocular clearance are available for only a few
compounds, and only seven compounds could be found for
this correlation study. The QSPR models appear useful in
the prediction of steady-state aqueous humour concentra-
tions, since Css of aqueous humour predicted with models
3b and 4b were comparable to those calculated with
experimentally measured permeability values and fairly
close to measured Css for several compounds. Compared to
the experimental permeability values, the model 4b
predicted Css better in three cases, worse in three cases
and equally in one case. The range of Css prediction error
was 0.7–6-fold for the computational model and 0.7–3-fold
for the experimental permeability experiment. It is worth-
while to notice that long-term medication by eye drops also
follows steady-state kinetics, but in that case, the aqueous
humour drug concentrations fluctuate around the mean
steady-state concentration that is determined by mean daily
drug input rate and clearance from the aqueous humour.

CONCLUSION

We have built QSPR models that are applicable to
estimate the corneal permeability of passively transported
drug-like compounds that fit within the property space of
the compounds used to build the model. The models are
simple, easy-to use, and statistically sound, and can be
explained physiologically. The developed models are
useful in the early phase of drug development when
molecules are chosen for further studies and experimen-
tal data is not yet available, whereas computational
descriptors are quick and easy to calculate. The models
could also be utilized to estimate intraocular steady-state
concentrations.
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